
“Len or index or count, anything but v1”: Predicting Variable Names in
Decompilation Output with Transfer Learning

Kuntal Kumar Pal∗, Ati Priya Bajaj∗, Pratyay Banerjee, Audrey Dutcher, Mutsumi Nakamura,
Zion Leonahenahe Basque, Himanshu Gupta, Saurabh Arjun Sawant, Ujjwala Anantheswaran,

Yan Shoshitaishvili, Adam Doupé, Chitta Baral, Ruoyu Wang
Arizona State University

{kkpal, atipriya, pbanerj6, dutcher, mutsumi, zbasque, hgupta35,
ssawan13, uananthe, yans, doupe, chitta, fishw}@asu.edu

Abstract—Binary reverse engineering is an arduous and tedious
task performed by skilled and expensive human analysts.
Information about the source code is irrevocably lost in the
compilation process. While modern decompilers attempt to
generate C-style source code from a binary, they cannot recover
lost variable names. Prior works have explored machine learn-
ing techniques for predicting variable names in decompiled
code. However, the state-of-the-art systems, DIRE and DIRTY,
generalize poorly to functions in the testing set that are not
included in the training set—31.8% for DIRE on DIRTY’s
data set and 36.9% for DIRTY on DIRTY’s data set.

In this paper, we present VARBERT, a Bidirectional En-
coder Representations from Transformers (BERT) to predict
meaningful variable names in decompilation output. An advan-
tage of VARBERT is that we can pre-train on human source
code and then fine-tune the model to the task of predicting
variable names. We also create a new data set VarCorpus,
which significantly expands the size and variety of the data set.
Our evaluation of VARBERT on VarCorpus, demonstrates a
significant improvement in predicting the developer’s original
variable names for O2 optimized binaries achieving accuracies
of 54.43% for IDA and 54.49% for Ghidra. VARBERT is
strictly better than state-of-the-art techniques: On a subset of
VarCorpus, VARBERT could predict the developer’s original
variable names 50.70% of the time, while DIRE and DIRTY
predicted original variable names 35.94% and 38.00% of the
time, respectively.

1. Introduction

Compilation, which transforms high-level source code
into low-level machine code, is fundamentally a lossy pro-
cedure. Much semantic information, including control flow
structures, function names, variable names, and comments,
is discarded during compilation because the target machine
does not need such information. For example, a CPU does
not understand the notions of variables, types, or loops

∗ Equal contribution

(relying only on registers, memory, and branch statements),
so the compiled output does not need this information.

This phenomenon of compilation-induced information
loss makes it more difficult for human analysts to under-
stand binary programs (“binaries”) than to understand source
code [61], despite the fact that a compiler-generated binary
encodes the same logic as the corresponding source code.
To aid humans in such understanding, and support a number
of downstream security tasks, researchers have developed a
number of decompilation techniques, which take as input
binary code, recover the lost semantic information from
the binary, and derive roughly equivalent source code (or
pseudocode, which generally is in an approximate version of
C). State-of-the-art decompilers, e.g., IDA Pro’s Hex-Rays
decompiler [27], Ghidra [13], and Binary Ninja [43], are
widely used in academia and industry. Security applications
for decompilation include malware analysis [18, 19, 61],
vulnerability discovery in binary code [40], patching soft-
ware defects [50], protocol reverse engineering [32], and
code reuse discovery [42].

However, decompilation is far from perfect, and signif-
icant problems continue to be addressed by researchers, in-
cluding the reconstruction of code structure [62], inferencing
of variable types [10, 37, 45, 66], and even the recovery of
meaningful variable names [10, 36]. Variable name recovery
is important because developers strive to properly name vari-
ables to embed semantic meaning and to improve readability
(and maintainability) of source code [49]. Unfortunately,
unless debug information is preserved during compilation,
these carefully-chosen variable names are lost, contributing
to the difficulty of binary code understanding.

An important insight from the existing variable name
recovery work DIRE [36] and DIRTY [10] is that the seman-
tics of variable names are related to their context, i.e., the
surrounding code. DIRE uses information from the Abstract
Syntax Tree of the decompiled code to feed into a neural
network model to predict variable names. DIRECT [44]
improved upon DIRE by only relying on text tokens and was
evaluated on DIRE’s data set. DIRTY uses a Transformer-
based neural network model, trained on a large corpus of

annotated decompilation output, to infer variable types and
names.

While these models can correctly predict the developer-
given variable name in 57.5% (DIRE on DIRTY’s data
set) and 66.4% (DIRTY on DIRTY’s data set) of cases in
DIRTY’s variable name prediction evaluation [10, Table 4],
when functions that are in the training set are removed
from the testing set, the accuracy drops to 31.8% (DIRE on
DIRTY’s data set) and 36.9% (DIRTY on DIRTY’s data set).
It is unnecessary for a variable name prediction system to
correctly identify variables in functions that are seen during
training—users can already create signatures1 of common
libraries and functions to recognize function names and
variable names. In fact, the biggest promise of variable name
prediction systems is to predict variable names on functions
that they have never seen before, and to predict semantically
valid variable names based on the context of a variable’s use.

Therefore, we aim to further the promise of variable
name prediction systems by leveraging recent advances in
machine-learning (ML) language models. Both DIRE and
DIRTY2 train special-purpose neural network models for the
specialized task of variable name predication. To improve
prediction performance, modern ML language models that
aim to understand human text are no longer specially-trained
on a specific task. For instance, the Bidirectional Encoder
Representations from Transformers (BERT) [15] model pi-
oneered the concept of first pre-training a model on natural
language text, then fine-tuning the model for a specific task.
The pre-training phase allows the model to learn about text
and the relationship between the words including the whole
context, and pre-training transfers the knowledge learned by
the model to the fine-tuning task.

As stated in DIRE and DIRTY, code (both source and de-
compiled) share similarities with natural languages. There-
fore, we believe that the variable name prediction task can
be improved by using the BERT concept of pre-training and
fine-tuning. We created a novel model, called VARBERT,
to validate this idea. In VARBERT, the pre-training phase
is on real source code, so that the model can learn about
intricacies of the source code (including the relationship
between variable names and their context). Then, we fine-
tune the model on decompiled code for the task of variable
name prediction and variable origin (i.e., is the variable an
extraneous one generated only during decompilation) pre-
diction. In this way, we significantly augment the learning
of VARBERT beyond just a data set of decompilation and
ground-truth of variable names.

In the process of replicating the DIRE and DIRTY
results and comparing with VARBERT, we identified several
latent shortcomings with their evaluation data sets that, when
corrected, impact that system’s evaluation results. Both the
DIRTY data set, which we will call DIRT [2], and the DIRE
data set, which we will call DIRE-DataSet [1], use similar
data set generation techniques and contain similar issues.

1. For instance, IDA Pro has Fast Library Identification and Recognition
Technology (FLIRT) signatures for this purpose.

2. While DIRTY also predicts variable types, in this paper we focus only
on predicting variable names.

Hence, we built a more extensive data set, which is expanded
with an eye toward evaluating the realistic application of
variable name prediction techniques, for training and testing
VARBERT. For pre-training, we used source code from
C packages in the Debian APT repository, totaling 5.2M
functions. For fine-tuning, we collected C and C++ packages
from the Gentoo package repository and compiled them
targeting x86-64 with four different compiler optimizations
(O0, O1, O2, and O3).

After decompiling with both the IDA Hex-Rays de-
compiler (referred to as IDA hereinafter) and Ghidra, we
produced a deduplicated corpus called VarCorpus. VarCor-
pus is significantly larger than DIRE-DataSet and DIRT,
including four different optimization levels and two different
decompilers, whereas DIRE-DataSet and DIRT include one
optimization level and one decompiler.

Our evaluation shows that after training, VARBERT
could predict the same variable names that the original
developer chose for O2 optimized binaries 54.43% of the
time for IDA and 54.49% for Ghidra. VARBERT strictly im-
proves the performance over state-of-the-art techniques: On
a comparable subset of VarCorpus (IDA-O0), VARBERT
achieved 50.70% while DIRE and DIRTY achieved 35.94%
and 38.00%, respectively. We also performed a user study
on how having meaningful variable names (as prediced
by VARBERT) impacts humans’ understanding of code.
Results from the study show that having variable names that
VARBERT predicts not only makes correctly understanding
decompiled code easier, but also significantly reduces the
time required for humans to understand decompiled code.

Contributions. We summarize our contributions as follows:

• We built a new neural-network model, VARBERT, to
predict variable names and variable origins in decompi-
lation output using transfer learning from source code
samples.

• We used novel techniques to build a new data set,
including decompiled functions from both C and C++
binaries, which is significantly larger and more exten-
sive than existing data sets.

• Using our new data set, we evaluated DIRE, DIRTY,
and VARBERT. VARBERT achieved 54.43% and
54.49% prediction accuracy on our data set of O2
binaries, for IDA and Ghidra respectively. VARBERT
(50.70%) outperformed DIRE (35.94%) and DIRTY
(38.00%) on O0 binaries for IDA. Our evaluation shows
that VARBERT is applicable to variable name and
origin prediction on decompilation output of stripped,
real-world software.

• We conducted the user study to evaluate the impact of
predicted variable names in decompiled functions on
code understanding. The study results provide statisti-
cally significant evidence to support the usefulness of
VARBERT on the task of understanding decompiled
code.

In the spirit of open science, we release our research ar-
tifacts, including all data sets, the source code, and our
models3.

2. Background

Predicting variable names is built atop many layers
of foundations. In this section, we provide the necessary
background knowledge on these layers.

2.1. Binary Reverse Engineering

Binary reverse engineering usually refers to the process
of analyzing binary programs with limited or no access to
the original source code. The obscurity of binary programs
makes analyzing malware [18, 19, 61], finding software
vulnerabilities [40], and mitigating software defects [50] ex-
tremely difficult, and the goal of binary reverse engineering
is to alleviate this problem.
Human binary reverse engineering. Ethical human ana-
lysts use binary reverse engineering techniques in malware
analysis [20], deobfuscation [60], binary diffing [9, 17],
inferring data structures [37, 45, 55, 66], manually finding
vulnerabilities [57], assisting automated vulnerability dis-
covery [7, 31, 52, 54], and patching vulnerabilities in binary
code [58]. Reverse engineering binary programs usually
requires significant expertise and the use of sophisticated,
sometimes very expensive, tools. Popular binary reverse
engineering frameworks include IDA Pro [27], Ghidra [13],
Binary Ninja [43], Hopper [28], and angr [53].
Binary decompilation. Decompilation is an intuitive ap-
proach for making binary code less obscure by recover-
ing high-level source code (such as C code) from binary
code [50]. Due to the lossyness inherent in the compilation
process, binary decompilation must attempt the undecidable
task of recovering variables. Even this simple task can be
complex and create decompilation artifacts: With only one
variable in the original code, the decompiler may infer many
variables. These could be due to operations of the binary
code (e.g., storing and retrieving the same variable from the
stack), to compilation operations (e.g., creating temporary
variables), or to compiler optimizations (e.g., duplicating
code or variables to improve performance). Therefore, the
variables that exist in decompilation can be either human-
created (i.e., in the original source code) or extraneous (i.e.,
not in the original source).

By enabling certain compilation flags (e.g., -g for GCC
and Clang), compilers may preserve debug information
either in the binary or as a separate file for debugging
purposes.
Predicting variable names in decompiled code. The qual-
ity of decompilation output will be significantly lower than
the original source code due to information discarded dur-
ing compilation. A critical category of lost information is
variable names. While modern decompilers attempt to infer
some variable names in decompilation output in a rule-based

3. https://github.com/sefcom/VarBERT

manner (e.g., arguments passed to known library functions),
they still leave a large portion of variables unnamed. Human
analysts must understand the decompilation output, which is
tedious, and rename unnamed variables one by one. Because
variable names are critical in assisting with understanding
the source code, the lack of such information in decompi-
lation output severely hampers its readability.

2.2. NLP Fundamentals
We take inspiration for VARBERT from the concepts

of transfer learning generally and specifically Bidirectional
Encoder Representations from Transformers (BERT) [15].
Transfer learning. Training a neural model determines the
optimal parameter values or weight of each node. First,
initial parameter values are usually randomly selected, then
they are updated based on training for a specific task (pro-
viding a known input to the model and updating the weights
so that the model is more likely to predict the intended
output).

Researchers in NLP and computer vision proposed (and
demonstrated the success of) the concept of transfer learn-
ing [12, 14, 41, 65], wherein parameter values originally
trained for Task A can be re-used as initial parameter values
when training a neural model for Task B if A and B are
similar. Creating an initial model for Task A is called pre-
training, and the second training run on Task B is called
fine-tuning.

Given the obvious similar nature between source code
and decompilation output, transfer learning (pre-training on
source and fine-tuning on decompilation output) becomes
a natural choice. It also reduces the need for clean and
large task-specific data sets. In VARBERT, we use transfer
learning to compensate for the difficulty of creating a large
corpus of clean decompilation output: We pre-train on easy-
to-obtain source code and then fine-tune on the decompila-
tion task.
BERT. Bidirectional Encoder Representations from Trans-
formers (BERT) is a neural model for pre-training deep,
bidirectional representations from unlabeled text by jointly
conditioning on left and right context in all layers [15]. It
learns how words in text are used while considering the
entire context wherein the word appears. BERT is pre-
trained in an unsupervised way on a huge collection of
natural language text with two pre-training tasks: Masked
Language Modeling (MLM), which helps the model learn
token representations based on relationships among input
tokens, and Next Sentence Prediction (NSP), which helps
in understanding sentences relations in a passage.
Masked Language Modeling (MLM). BERT proposed a
language modeling task, called Masked Language Modeling
(MLM), to train Transformer Encoders and learn rich rep-
resentations for tokens. The idea is to randomly mask (i.e.,
remove) tokens from a complete token sequence and ask the
model to predict the masked tokens.

While there are other details in the MLM training task
for BERT, we refer the interested reader to the original
BERT paper [15] for those details.

https://github.com/sefcom/VarBERT

Vocabulary for neural models. A neural model uses a
vocabulary to translate tokens to numeric encodings. A vo-
cabulary is created using a tokenizer on its input (e.g., text).
The size of the vocabulary should not be too low or too high
for performance concerns. Byte-Pair Encoding (BPE) [51] is
a hybrid method between the character and word level text
representations. BPE can handle large vocabularies, where
a word is split into smaller sub-unit words.

Overlap between pre-training and fine-tuning corpora.
Overlap between unlabeled or auto-labeled corpora used in
pre-training and labeled corpora used in finetuning in mod-
ern models is common and generally accepted: For example,
BERT, which was pre-trained on books and Wikipedia, is
used on tasks such as reading comprehension (SQuAD [48]),
questions and answers (Natural-Question-Dataset [35]), and
complex question/answer pairs (HotpotQA [64]), all of
which use Wikipedia to build task datasets.

3. Overview

VARBERT comprises two main components: The first
component is Corpus Generation, which collects and pro-
cesses source code, builds binary executables or libraries
with compiler optimizations (e.g., O0, O1, O2, and O3),
generates debug symbols as ground truth for training and
testing the model, and invokes external decompilers (e.g.,
IDA and Ghidra) to decompile binaries and create corpora.
The second component (shown in Figure 1) is a BERT-based
neural network model that takes as input tokenized decom-
piled code and predicts, for each variable, its variable origin
and its human-created variable name. Variable origin refers
to whether a variable is created by the software developer
(human-created) or introduced by the decompilation process,
and did not exist in original source code (extraneous).

3.1. The Neural Model in VARBERT

Collecting a large and diverse corpus of decompiled
source code is a difficult task that prior research acknowl-
edges [10, 25, 36]. However, acquiring a large and diverse
body of source code without requiring the code to be com-
pilable is much simpler. This insight led us to use transfer
learning (described further in Section 2.2) in VARBERT for
predicting variable names in decompilation output. Building
this model contains two major steps:

Step 1: Pre-training. During pre-training, VARBERT takes
pre-processed source code functions as input, where each
function is considered as an independent instance of input.
VARBERT tokenizes each function and generates a token
stream. Using the token streams, we learn a vocabulary of
most frequent tokens using Byte-Pair Encoding [51]. Finally,
we learn the representation of code-tokens and subsequently
pre-train a BERT model from scratch using Constrained
Masked Language Modeling, a modification of Masked Lan-
guage Modeling that will be described in Section 4.2.

Step 2: Fine-tuning. Next, we fine-tune the BERT model
on decompilation corpora for the following tasks:

• Predicting variable origin. During decompilation, de-
compilers may introduce variables that do not exist in
the original source. For each variable, VARBERT pre-
dicts whether it is created by developers and exists in
the original source as human-created, or is introduced
by decompilation (and does not exist in the original
code) as extraneous. Collapsing extraneous variables
into human-created ones improves the readability of
decompilation.

• Predicting variable name. For each variable, VAR-
BERT predicts its human-created variable name.

We discuss the fine-tuning process in Section 4.3.

3.2. Building A New Data Set
In the process of replicating the DIRE [36] and

DIRTY [10] variable name prediction results to compare
with VARBERT, we identified several shortcomings that
impact both the model training and evaluation. These short-
comings necessitate a new and more extensive data set for
the field of variable name prediction in decompiled code.
Therefore, we build two types of corpora for VARBERT:
Pre-training corpus. The first type of corpora comprises
annotated functions that human developers author and are
used for pre-training. We collected C source files from
the Debian APT repository, then parsed and pre-processed
these files. The goal of pre-processing is to make source
code resemble decompilation output, as required by transfer
learning. Pre-processing includes comment removal, macro
expansion, invalid identifier removal, etc. Finally, we anno-
tated these files to indicate the variables in each function.
Before creating the training and testing sets, we deduplicated
the functions, resulting in a total of 5,235,792 C functions.
For the rest of the paper, we refer to this corpus as the
Human-Source-Code (HSC) corpus.
Fine-tuning corpora. The second type of corpora consists
of decompilation output generated by decompilers and will
be used as input for fine-tuning. We collected C and C++
packages from the Gentoo package repository, built them
targeting x86-64 for four compiler optimizations: O0, O1,
O2, and O3 with debug symbols preserved (-g). We had
a total number of 112,488 deduplicated x86-64 binary ex-
ecutables or libraries prior to decompilation. This number
includes binary executables for all four compiler optimiza-
tions.

Figure 2 illustrates the process. We processed the debug
symbols for each binary, stripping their type information,
and leaving only human-created variable names. This is im-
portant because it eliminates the impact that debug symbols
(especially type information) have on decompilation output.
Then, we decompiled each binary with two decompilers,
IDA and Ghidra, and collected the decompilation output per
function. We also removed obviously useless functions (e.g.,
PLT and glibc stubs) from the collection, then annotated
the remaining functions to indicate the locations of variable
names in each function. We call this corpus VarCorpus.
VarCorpus-O0 is a corpus created from binaries compiled
with -O0 compiler optimization and so on.

int64 sub_412810(int64 <mask>)
{

int <mask>;
if (sendmsg(<mask>, 0) == 1)

<mask> = 1;
else

<mask> = 0;
return <mask>;

}

Masked decompiled function

668, 332, 292, 403, 332, ...,65,
890, 403, 4, 11, 93, 668, 332, 292,
403, 4, 29, 286, 10, 997, 292, 11,
86, 65, 890, 65, 696, 10, 4, 16, ...

Token stream

VarBERT Neural Network Model

int64 sub_412810(int64 a0)
{

int v1;
if (sendmsg(a0, 0) == 1)

v1 = 1;
else

v1 = 0;
return v1;

}

Stripped decompiled function

VarBERT

Variable name

prediction head

Variable origin

prediction head

msg, human
result, dec
msg, human
result, dec
result, dec
ret, dec

Prediction result

Figure 1: The prediction pipeline of VARBERT. The decompiled code is variable-masked and tokenized into a token stream,
which is used as input to the model for prediction. VARBERT predicts both variable name and origin for each masked
location.

int64 sub_419200(int64 msg)
{

int ret;
if (sendmsg(msg, 0) == 1)

ret = 1;
else

ret = 0;
return ret;

}

Type-stripped decompiled function

int64 sub_412800(int64 a0)
{

int v1;
if (sendmsg(a0, 0) == 1)

v1 = 1;
else

v1 = 0;
return v1;

}

Fully-stripped decompiled function

int64 sub_412800(int64 a0@@msg)
{

int v1@@ret;
if (sendmsg(a0@@msg, 0) == 1)

v1@@ret = 1;
else

v1@@ret = 0;
return v1@@ret;

}

Annotated decompiled function

Corpus Generation

Figure 2: Matching a fully-stripped decompiled function
with its corresponding type-stripped version to create an
annotation function in a fine-tuning corpus.

4. The VARBERT Model

While the VARBERT model is based on BERT, we
customized many aspects of the model design based on our
insights on the task of variable name prediction in decom-
piled code. In the remainder of this section, we first present
basic parameters of the VARBERT model (Section 4.1).
Then we present the pre-training phase (Section 4.2) and
the fine-tuning phase (Section 4.3) of VARBERT, where we
discuss critical design choices that we made for our model.

4.1. Basic Parameters

As a Transformer-based model, basic parameters of
VARBERT are the number of neural layers L, the num-
ber of self-attention heads A, and the hidden dimension
H . Training a huge transformer-based model is compu-
tationally heavy and time-consuming. Limited by accessi-
ble computing resources, VARBERT has fewer layers than
the original BERT. We take initial hyper-parameters from

RoBERTa [39], which demonstrated an empirically optimal
hyper-parameter configuration for BERT on NLP tasks.

We hypothesized that for the task of variable name
prediction a model might perform well, and created a neural
network with L = 6, A = 8, and H = 512. We chose
the maximum number of tokens as 800. Our model has
45 million trainable parameters, which is about 40% of the
number of trainable parameters of BERT-Base [39].

4.2. Pre-Training

As discussed in Section 2.2, prior NLP and computer
vision research demonstrated the need and impact of pre-
training on auxiliary tasks before the final intended task [15,
39, 56, 63].

Tokenization. The vanilla BERT model is familiar with
English word vocabulary and uses a word-piece tokenizer.
However, English is quite different from source code and de-
compiled code in terms of structure, syntax, and keywords.
Specifically, numbers, parentheses, and square brackets in
code all capture meanings based on the context, and a word-
piece tokenizer will ignore these important types of tokens
because they are not critical in plain English. For the model
to better understand code, we learn a new source vocabulary
using a Byte-Pair Encoding (BPE) tokenizer instead of a
word-piece tokenizer. Following the RoBERTa (an opti-
mized version of the original BERT model) [39] tokenizer,
we consider learning a source vocabulary of 50,265 most
frequently occurring tokens from the training data set of
our human source code (HSC) corpus.

Task formulation. Both DIRE and DIRTY formulate vari-
able name prediction as a generation task: They iteratively
generate tokens and combine them to form new predicted
variable names. However, we observed in both solutions that
they frequently predict sub-optimal variable names, such
as fire_fire_fire_fire_fire_fire. This obser-
vation leads us to consider the variable name prediction task
as a language model slot-filling task instead. VARBERT

model will predict a variable name based on its left and
right contexts.

Tokenization scheme. Vanilla BERT tokenizes all input
sentences, which will split most variable names into dif-
ferent tokens (e.g., word_count may be split into word_
and count) and does not fit the variable name prediction
task. Inspired by the whole-word-masking strategy, which
keeps essential English words intact during tokenization and
improves performance on many NLP tasks [5], we introduce
a new tokenization scheme into the VARBERT model that
inserts all frequent variable names into the vocabulary and
keeps all variable names intact during tokenization.

Masked Language Modeling. Our motivation is to make
VARBERT familiar with the nature of input data. We first
tokenize each function of the HSC corpus and generate
a token stream using the learned vocabulary. Finally, we
learn the representation of the code-tokens using BERT from
scratch by Masked Language Modeling approach similar to
the approach given in RoBERTa [39]. We randomly mask
tokens and ask the model to recover the masked token, and
in the process, learn rich representations for the code-tokens.

Constrained Masked Language Modeling. Next, we
formulate another pre-training task, Constrained MLM
(CMLM, a variation of MLM), which was proposed in prior
work [16, 23], where tokens are not randomly masked.
The motivation is to teach the model the task of selec-
tively recovering specific code tokens. We define CMLM
as follows: Let W0,WN be a sequence of tokens. Let
C = {A0, ..Ac} be a set of tokens which we define as
the constrained set of tokens. Then, in CMLM, all tokens
in W0,WN which belong to C are masked, and C is a
subset of V (all variable names). We then train the model
to predict the masked token with a cross-entropy loss:

−
N∑
i=0

M∑
c=1

ywi,vc log(pwi,vc) (1)

where M is the size of the vocabulary, wi is the current
token, vc is the target token, y is an indicator variable
which is 1 if the target is vc and 0 otherwise, and p is
the probability that wi is the same as vc. Here, we select
a vocabulary of 50K most frequently occurring human-
authored variable names from the HSC corpus. Then, we
selectively mask the variable names and train the model to
predict them based on the vocabulary.

4.3. Fine-Tuning

After pre-training on general source code, we fine-tuned
our pre-trained models for the variable name prediction task
and the variable origin prediction task. We again use the
CMLM task by masking variables in the training corpus
for each decompiler. We first develop a target vocabulary
of frequently occurring variable names from the training
data along with earlier chosen 50K human-authored variable
names. We optimized the model parameters by minimizing
the overall joint cross-entropy loss L(X,Y) by taking the

mean loss of N mini-batches (2), where X and Y are the
input and labels respectively.

L(X,Y) =
1

N

N∑
n=1

Ln (2)

For the variable name prediction task, each mini-batch loss
(Ln) is the sum of all variable-name prediction loss (ltv)
in that mini-batch. For the joint prediction task, each mini-
batch loss is the sum of joint loss of the predicted name
(ltv) and the predicted origin (lto) for each variable (t) in
that mini-batch (n). Equation (3) formalizes this, where Tn

is the total number of variables to predict in a particular
mini-batch (n).

Ln =

Tn∑
t=1

(ltv + lto) (3)

We further formalize both cross-entropy loss functions in
Equations (4) and (5) where C1 and C2 are vocabulary
lengths of the variable name prediction task and the variable
origin prediction task, respectively.

ltv(X,Y) = log
exp(xtyt

)∑C1−1
c=0 exp(xtc)

(4)

lto(X,Y) = log
exp(xtyt

)∑C2−1
c=0 exp(xtc)

(5)

Handling long functions. Although we increased the max-
imum input size of our VARBERT to 800 tokens (from
BERT’s 512), we still encounter many functions that have
more tokens. To predict variable names for functions with
more than 800 tokens, VARBERT splits these function
bodies into 800-token chunks and considers them as separate
samples during prediction.

5. Corpora Generation

Building a good corpus that is diverse and also represen-
tative of the target task is critical for training and evaluating
any ML model. However, while using the data sets from
DIRE [36] and DIRTY [10], we identified several short-
comings, which we briefly describe in Section 5.1. While
these shortcomings do not impact the novelty of DIRE
or DIRTY, we believe they necessitate the construction of
a more extensive, thorough data set for evaluating future
research. We describe the construction of a new data set in
Section 5.2.

5.1. Shortcomings with Prior Data Sets

We truly appreciate the authors of the pioneer variable
name prediction works DIRE [36] and DIRTY [10] for their
contributions to open and reproducible science by publicly
releasing their data sets (we refer to DIRE’s data set as
DIRE-DataSet and DIRTY’s data set as DIRT) and research
artifacts [1, 2]. However, there are several shortcomings in

their data sets4. We briefly present these shortcomings next,
and provide an in-depth analysis of these shortcomings in
Appendix A.1 for interested readers.
Overlap between test and training sets. There is a large
overlap in the training and testing set of both DIRE-DataSet
(79.9%) and DIRT (65.5%). This may lead to inflated pre-
diction accuracy: It may appear that the model is general-
izing when it is memorizing the duplicates [6, 38].
Duplicated functions. Both DIRE-DataSet and DIRT con-
tain duplicated functions in their training sets (683K/1M,
67.6% for DIRE-DataSet and 1M/1.8M, 56.9% for DIRT),
which may skew a model’s training to over-represent these
duplicated functions.
Unmatched variables. In both data sets, many variables
in the decompilation output are not correctly matched to
their original names in the ground-truth data sets, leaving
any models trained on this corpus to predict fewer variables
than they should.
For completeness, we addressed some of these shortcomings
in a best-effort manner and re-evaluated DIRE, DIRTY, and
VARBERT on an improved version of existing data sets.
Detailed results are in Appendix A.4.

5.2. Building VarCorpus

VARBERT uses two types of corpora: The HSC corpus
for pre-training and VarCorpus for fine-tuning. Building the
HSC corpus was straightforward, and here we focus on the
generation of the fine-tuning corpora.
Compiling packages. We collected C and C++ packages
from the Gentoo repository, and compiled them using op-
timization level O0 (no optimization), O1, O2, and O3
with debug symbols kept (-g). Because debug symbols
contain all human-created variables and their names, we
have a 100% accurate mapping between each variable and
its original human-created name. In total, we have 112,488
binary executables or libraries across all optimizations.
Stripping types from debug symbols. Types in debug
symbols will influence decompilation output [36]. Because
the major use case for VARBERT is predicting variable
names on fully stripped binaries (i.e., binaries without any
debug symbols, function names, etc.), we must ensure that
our debug symbols only contain variable names and do
not contain any type information. We developed a novel
technique that strips type information from debug sym-
bols, called type-stripping, which we discuss in detail in
Section 5.3. After type-stripping, we produce binaries with
debug symbols that only have variable names preserved.
Decompiling executables and annotating output. We
batch decompiled all executables with two decompilers IDA

4. We stress that we do not blame the DIRE or DIRTY authors. In fact,
we applaud them for releasing data sets and being responsive when we
approached them for questions. DIRE and DIRTY pioneered this line of
research, and we believe finding and addressing issues in prior research
work is how science advances. This work would not be possible without
the DIRE and DIRTY authors’ dedication to open science, and for that we
are very grateful.

and Ghidra (to ensure diversity in VarCorpus among de-
compilers), and generated decompiled code with human-
created variable names. We chose IDA and Ghidra be-
cause, out of all binary decompilers that we tested, only
IDA and Ghidra could generate C-style pseudocode with
acceptable quality. Other decompilers that we considered
either failed to decompile many functions, do not support
debug information, or could not generate C-style pseu-
docode. Then, we batch decompiled the fully stripped ver-
sion of each executable and generated decompiled code
with only decompiler-assigned variable names. By match-
ing each function with only decompiler-assigned variable
names against its counterpart with human-created variable
names, we annotated each variable with its unique identifier,
its original variable name, and whether it was extraneous
or human-created. Relying on decompilers’ debug symbol
loading support enables a more accurate mapping of human-
created variables to their names. This way, we eliminate
the need for variable matching heuristics used by prior
work (which was only about 62% accurate) [30, 36]. Be-
cause we fully strip the binary, the functions do not have
meaningful function names. While a compiler optimization
level of O2 (increased optimizations) is more commonly
used in real-world binaries, both IDA and Ghidra fail in
many cases to keep variable names from debug symbols
during decompilation5, leading to lost variable names in the
decompilation output when debug symbols are available. We
address this issue for IDA while building VarCorpus-O1,
VarCorpus-O2, and VarCorpus-O3. However, Ghidra would
frequently merge variables in decompilation that correspond
to different human-created variables, making these variables
extraneous.

Function deduplication. We deduplicated all the functions
in VarCorpus before creating training and testing sets. For
deduplication we use a hash-based strategy: We first nor-
malize all functions by removing newlines, whitespaces, and
decompiler-generated comments, then hash function bodies
and only leave one function for each unique hash. This
way we remove any duplicate functions (including third-
party library functions) that are shared among projects. We
found that similarity-based deduplication fails to capture the
intricacies of code and ignores minor textual differences
that can be critical for differentiating between two func-
tions. We tokenized the code and used near-duplicate-code-
detector [6, 29]. This approach removed functions where
there were minimal textual differences, but in C/C++ the
presence and absence of * and & convey distinct semantics.
These nuances can alter the logic and behavior of code. In
many cases, near-duplicate-code-detector incorrectly reports
function duplicates and removes functions that are otherwise
good training candidates. A carefully tuned similarity-based
duplication detector may work, which we regard as a re-
search problem that future work may address.

5. Specifically, some human-created variable names for register variables
are lost during decompilation. This is an implementation issue in both IDA
and Ghidra.

Cleaning up. Finally, we cleaned up our corpora by re-
moving irrelevant functions that only exist due to compila-
tion or decompilation. For example, we removed all glibc-
initialization functions added by GCC and Clang. We also
removed function stubs in Procedure Linkage Tables (PLTs).

5.3. Reliably Matching Variable Names

We rely on a decompiler’s output on a binary with
debugging information as a proxy for what an “ideal”
decompilation on a fully stripped binary should be. The
decompiler reads debug symbols associated with the binary
and consumes variable names and data types. However, it is
important to note that data types impact the decompilation
output. Therefore, we propose a novel technique, called
type-stripping, for rewriting the DWARF debugging infor-
mation of a binary to include only name information and
no type information. Type-stripping parses DWARF from
an ELF binary, manipulates it, and then fully serializes it
back to the binary.

While type-stripping is more engineering-intensive than
editing the DWARF data stream to remove members we
found undesirable, it proved necessary due to quirks in
some decompilers’ parsing of DWARF data. Both IDA
and Ghidra have brittle DWARF parsing: They refuse to
integrate DWARF data into their analysis unless variables
have well-formed names and type information associated.
As such, it is necessary to replace all references to a given
type with references to a generic scalar type of the same
size instead of discarding them. Pointers become pointer-
sized words, and aggregate types (i.e., structs, arrays, and
unions) become words with the size of the aggregate’s first
member.

The benefits of type-stripping can be observed in List-
ing 1. (a) is the decompiled code in the presence of DWARF
information, (b) is the decompiled code from the stripped
binary, and (c) is the decompiled code from the binary
rewritten with type-stripping. The edit distance from (a)
to (b) is visibly higher than the edit distance from (c)
to (b). This indicates that type-stripping the corpus before
training will yield a variable name prediction model which
produces more reliable predictions about the missing name
information in stripped code.

5.4. Evaluating VarCorpus Quality

Now that we have collected VarCorpus, we must show
that this corpus is reasonable and improves over the state-
of-the-art corpora.
Binaries. An essential difference between VarCorpus and
DIRT (also DIRE-DataSet) is the definition of “binaries.”
DIRT and DIRE-DataSet use compiled object files whereas
VarCorpus only includes binary executables or libraries.
Since each executable may be linked from tens, hundreds,
or thousands of object files, the numbers of binaries in
VarCorpus are not comparable to the ones in DIRE-DataSet
and DIRT.
Corpora sizes and duplicated functions. Table 1 shows
the summary of all data sets. DIRE-DataSet and DIRT both

void grecs_print_value(grecs_value *val, int flags, FILE
*fp)↪→

{
grecs_format_closure clos;
clos.fmtfun = file_fmt;
clos.data = fp;
grecs_format_value(val, flags, &clos);

}

(a) Decompiled code with debug symbols present.
void sub_D5F2(int *a1, unsigned int a2, __int64 a3)
{

__int64 v3[2];
v3[0] = sub_D551;
v3[1] = a3;
sub_D057(a1, a2, v3);

}

(b) Decompiled code of a stripped binary (without debug symbols).
void sub_D5F2(__int64 val, unsigned int flags, __int64

fp)↪→
{

__int64 clos[2];
clos[0] = file_fmt;
clos[1] = fp;
grecs_format_value(val, flags, clos);

}

(c) Decompiled code of a type-stripped binary.

Listing 1: Comparison among decompiled code with
DWARF information, decompiled code of a stripped binary,
and decompiled code of a type-stripped binary. Note that
type-stripped decompilation output and stripped decompila-
tion output almost perfectly match.

TABLE 1: Summary of all data sets, including numbers of
functions, unique variable names, and numbers of binaries.
“C.O.” means Compiler Optimization.

Data Set C.O. Unique Variables Functions Binaries

HSC N/A 3,561,537 5,235,792 N/A

VarCorpus (IDA)

O0 682,461 2,657,046 26,280

O1 234,417 722,942 16,815

O2 201,525 579,606 15,893

O3 198,297 578,156 15,427

VarCorpus (Ghidra)

O0 521,668 2,066,871 20,433

O1 179,016 856,608 16,647

O2 218,633 763,053 17,939

O3 193,712 628,384 13,770

DIRE-DataSet [36, RQ4]∗ O0 92,082 1,259,935 164,632

DIRE-DataSet-Dedup O0 92,082 463,238 N/A

DIRT [10, Table 11]∗ O0 237,928 2,075,762 75,656

DIRT-Dedup O0 237,928 995,418 N/A

contain a high number of duplicated functions in their train-
ing sets (and test sets). VarCorpus has 0 duplicate functions.
Additionally, VarCorpus is more diverse; For O0 data sets,
VarCorpus contains over 1.6x more unique functions than
DIRT-Dedup and 4.6x more unique functions than DIRE-
DataSet-Dedup. VarCorpus contains functions from both C
and C++ binaries, and the percentage of C++ functions

0 100K 200K 300K 400K 500K 600K 700K
Variables

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

92K 237K 682K

DIRE-DataSet
DIRT
VarCorpus

Figure 3: The cumulative distribution of unique variables
in each of the three data sets (DIRE-DataSet, DIRT, and
VarCorpus).

ranges from 9% to 31% across all data sets. Finally, the
number of unique variables in VarCorpus-O0 is 3.57x of
the number of unique variables in DIRT.
Overlap between test and training sets. Because there is
no function duplication in VarCorpus, our test and training
sets also do not overlap.
Overlap between HSC and VarCorpus. The structure of
an HSC function is usually very different from its decom-
piled counterpart. To calculate the overlap between HSC
(training set) and VarCorpus (IDA-O0 function test set), we
consider an upper-bound of potential duplicates by counting
duplicate tuples of package-name + function-name. There
are 2.54% such duplicate pairs with an average edit distance
(AED) of 339.25 characters per function pair. Therefore, we
conclude that there is no overlap in HSC and VarCorpus.
Distribution of variable names. We also take a closer look
at how many times each variable appears in these data sets.
Figure 3 shows the cumulative distribution of each unique
variable in DIRE-DataSet, DIRT, and VarCorpus. While all
three data sets have similar distributions for top variables,
VarCorpus contains a lot more unique variables than the
other two data sets.
Variable name matching. Finally, to understand the per-
formance of variable matching in DIRE-DataSet, DIRT,
and VarCorpus-O0 (IDA), we randomly sampled 5,000 C
functions in each corpus, and measured the ratio between
developer-assigned variable names and the total number of
variable names. Assuming IDA injects on average similar
amount of extraneous variables during decompilation for
binaries built with the same optimization level, the ratios on
both corpora should be similar. However, through random
sampling, we measured a ratio of 56% on DIRE-DataSet,
62% on DIRT, and 75% on VarCorpus (IDA). This shows
that we correctly mapped more developer-assigned variable
names to variables in decompilation output than DIRE-
DataSet and DIRT.

Based on this analysis data, we believe that VarCorpus
represents a significant improvement over the prior variable

name prediction data sets, and should serve as a benchmark
for future research in this area.

6. Evaluation

Throughout this evaluation, we seek to measure the per-
formance of variable name prediction systems on predicting
variable names in previously unforeseen functions. There-
fore, unlike prior research (DIRE, DIRECT, and DIRTY),
we only present the results from data sets where there is
no duplication of functions between the training and testing
sets.

We attempt to answer the following research questions
in our evaluation:

RQ1. How does VARBERT perform on VarCorpus?
RQ2. How do prior work and VARBERT compare on Var-

Corpus?
RQ3. How do different aspects of VARBERT impact its

effectiveness?
RQ4. How does VARBERT help reverse engineers in real-

world binary analysis tasks?

6.1. Implementation

We implement VARBERT using Python. For decom-
pilation when building the fine-tuning corpora, we used
the Hex-Rays decompiler (in IDA Pro 7.6) and Ghidra
10.4. For building and training the neural model, we used
PyTorch [47] 1.9.0, HuggingFace Transformers [59] 4.10.0,
and Facebook FairSeq [46] 0.10.0.

6.2. RQ1: How does VARBERT perform on Var-
Corpus?

Given the high quality of VarCorpus that we evaluated in
Section 5.4, we first evaluate the performance of VARBERT
on VarCorpus.

We took eight corpora from VarCorpus, four for IDA
(the IDA corpus), and another four for Ghidra (the Ghidra
corpus) across four compiler optimizations: O0, O1, O2, and
O3. In a ratio of 80:20, we split each corpus into training
and test sets.

We also experimented with two data splitting ap-
proaches: (a) randomly splitting data by function (per-
function) and (b) randomly splitting data by binary (per-
binary). Please note that, as discussed in Section 5.4, Var-
Corpus per-binary split (where “binaries” are executables)
is different from DIRT and DIRE-DataSet (where “binaries”
are object files). This split is important because the per-
function split might have functions that are from the same
source project in both testing and training (although not
the same functions in testing and training, as there is no
duplication), while with the per-binary split this is less likely
(although, it is possible for two binaries to be from different
projects and include similar library functions, even if not
identical, such as different versions of a library). In this
sense, we expect it to be more difficult to predict when
using the per-binary split than the per-function split.

TABLE 2: Evaluation of VARBERT’s variable-name-
prediction and variable-origin-prediction tasks fine-tuned on
VarCorpus for different corpus optimization levels (C.O.)
and either a function-level split or a binary-level split. Values
in Top-N columns are accuracy rates of human-created
variable names in percentage: Top-N means the correctly
predicted variable is present among the first N predicted
variable names.

VarCorpus
Variant

C.O. Split Variable Name Variable Origin

Top-1 Top-3 Top-5 AED CER Accuracy F1

IDA

O0 Function 54.01 63.25 66.47 2.06 44 88.35 87.51

Binary 44.80 53.11 56.23 2.33 52 87.69 86.94

O1 Function 53.51 62.76 65.96 2.24 47 82.86 82.82

Binary 42.55 49.54 52.25 2.80 62 81.59 81.47

O2 Function 54.43 63.62 66.78 2.21 46 80.40 80.05

Binary 42.40 49.67 52.45 2.64 59 79.48 79.04

O3 Function 56.00 64.81 67.83 2.12 44 80.74 80.49

Binary 40.70 49.26 52.35 2.71 61 78.28 77.89

Ghidra

O0 Function 60.13 68.60 71.44 1.67 37 88.70 88.69

Binary 46.1 53.34 56.03 2.15 50 86.90 86.69

O1 Function 58.47 66.16 68.76 2.30 46 88.63 87.20

Binary 42.87 49.32 51.82 2.85 63 87.25 85.67

O2 Function 54.49 61.52 63.93 2.34 46 87.48 85.11

Binary 40.49 46.64 48.98 2.85 61 86.13 83.63

O3 Function 54.68 61.71 64.08 2.43 49 88.22 85.13

Binary 40.09 46.35 48.74 2.89 64 85.89 81.84

As previously discussed in Section 3, we pre-trained
VARBERT on human source code and then fine-tuned it
separately on each corpus: the IDA corpus and the Ghidra
corpus.

Finally, we evaluated VARBERT on two testing sets for
two tasks: Predicting the origin of each variable (extraneous
versus human-created) and predicting the name for each
human-created variable.

Variable origins. The right two columns of Table 2 show
the results of the variable-origin-prediction task. VARBERT
can predict whether a variable is human-created or extra-
neous roughly 80% to 90% of the time. We believe that
these results can help decompilers to produce improved
decompilation results that are closer to the source code (an
orthogonal benefit to variable name prediction).

Variable names. Table 2 shows the results of the variable
name prediction task on the IDA and Ghidra corpora. VAR-
BERT achieved Top-1 accuracy of 54.01% on the IDA-
O0 corpus and 60.13% on the Ghidra-O0 corpus, when
split on a per-function basis. For reference, these numbers
are higher DIRTY’s accuracy on DIRT’s not-in-train test
set for IDA-O0, which was 36.9% [10]. This result shows
that VARBERT learns variables’ semantics better from their
contexts and, because there is no overlap between training
and test sets, generalizes better to functions on which the
model was not trained.

Variable names on optimized binaries. VarCorpus allows
the evaluation of VARBERT’s performance on binaries
compiled with optimizations enabled. Much to our surprise,
we do not observe any significant drop in accuracy when

TABLE 3: Comparison of VARBERT, DIRTY, and DIRE
on VarCorpus.

Model Split Top-1 Accuracy AED CER

VARBERT Function 50.70 2.25 47

Binary 37.17 2.74 62

DIRTY Function 38.006 3.13 124

Binary 32.656 3.11 123

DIRE Function 35.94 3.34 75

predicting variable names for O1, O2, or O3 binaries using
per-function splits, and this finding is consistent across
both decompilers. This result clearly shows the applicability
of VARBERT for predicting variable names in real-world
binaries, which are often built with optimizations enabled.
Variable names on per-binary splits. As anticipated, the
accuracy of VARBERT when working on per-binary splits
is decreased compared to its accuracy on per-function splits.
The difference with the same decompiler-optimization pair
is usually between 10% and 14%. In per-binary splits, due
to the Out-Of-Distribution issue, any variable names that
only appear in test set cannot be predicted. We believe
the performance of per-binary splits can be improved by
increasing the size of VarCorpus, which we leave as future
work.
Non-exact matching predictions. While this analysis is
on exact-matching variable names, we notice that different
variable names may have the same or similar meanings. For
example, ctr, count, and counter are sometimes used
interchangeably. To measure the performance of VARBERT
in non-exact matching cases, we report Average Edit Dis-
tance (AED) and Character Error Rate (CER) in Table 2.
AED and CER quantify the similarity in predicted variable
and ground truth and credits partial mispredictions. For
reference, the CER for DIRE on DIRE-DataSet’s not-in-train
test set was 67.2% [36, Table I], and VARBERT achieves a
lower CER of 44%. Later (in Section 7.2) we present cases
of mispredicted yet semantically correct variable names.

6.3. RQ2: How do prior work and VARBERT
compare on VarCorpus?

In this experiment, we compare VARBERT, DIRE, and
DIRTY on VarCorpus. We only evaluate these systems on
the IDA-O0 data set because DIRE and DIRTY only sup-
port output from IDA with compiler optimization level O0.
Because DIRE and DIRTY require different input formats,
we rebuilt training and test sets for DIRE and DIRTY using
binaries in VarCorpus. The training was performed on 1,050
binaries with 400K functions (∼15% of VarCorpus). This
is due to the prohibitively long training time that DIRE
requires for large datasets. We also attempted to include
DIRECT, however we could not train any usable models
(using the code released by the authors after fixing several
issues) because the training for DIRECT does not scale well.

TABLE 4: The impact of pre-training tasks on variable
name and origin prediction accuracy of VARBERT (on
VarCorpus-IDA-O2 with function split).

Model Variants Variable Name Variable Origin

Top-1 Top-3 Top-5 Accuracy F1

Fine-tuning only 39.83 51.28 55.62 78.68 77.53
MLM + Fine-tuning 50.04 59.16 62.31 79.83 79.40
MLM + CMLM + Fine-tuning 54.43 63.62 66.78 80.40 80.05

Table 3 shows that VARBERT outperforms DIRTY and
DIRE by 12.70% and 14.76% respectively on the function
split. On the binary split, VARBERT’s accuracy is 4.52%
higher than DIRTY’s. This result shows that VARBERT is
better at variable prediction when evaluated on the same
data set.
Variances in DIRTY’s vocabulary sizes. DIRTY origi-
nally used a vocabulary size of 10K to achieve a character
coverage of 99.9% on DIRT (2 million functions on 75K
binaries), i.e., covering all source code tokens. We used a
higher vocabulary size of 16K (for function split) and 14K
(for binary split) to achieve the same character coverage on
a much smaller data set (400K functions on 10K binaries).
This is because binaries in VarCorpus are more diverse and
have more unique source code tokens. Appendix A.2 offers
insights on this aspect.

6.4. RQ3: How do different aspects of VARBERT
impact its effectiveness?

To understand the impact of multiple design choices in
VARBERT, we performed an ablation study.
The impact of pre-training. We studied the impact of
pre-training tasks by training new models on VarCorpus-
IDA-O2. As shown by the “Fine-tuning only” and “MLM
+ CMLM + Fine-tuning” rows in Table 4, transfer learning,
i.e., pre-training on HSC has significant impact (over 14%
improvement) on the accuracy of variable name prediction
task. This proves the necessity of performing pre-training
on HSC.
The impact of CMLM. We further studied the impact
of CMLM by pre-training new models with and without
CMLM;‘ the results are in the “MLM + Fine-tuning” and
“MLM + CMLM + Fine-tuning” rows in Table 4. When
using CMLM, we observe improvements of around 4% in
the Top-N accuracy in the variable name prediction task,
which shows the usefulness of CMLM. CMLM has minimal
impact on the variable origin prediction task.
The impact of corpus sizes. To study the impact of corpus
sizes, we trained VARBERT on 20%, 40%, 60%, and 80%
of the training set of VarCorpus-IDA-O2. Figure 4 shows
that with 20% training data, VARBERT achieved good

6. In DIRTY’s evaluations, decompiler-generated variables, such as v2
are counted as true positives when predicted as v2. However, these
variables are not developer-assigned; therefore, after postprocessing and
eliminating these predictions, the revised accuracies for the Function and
Binary splits are 18.55% and 13.15%, respectively. Similarly, the updated
accuracy for DIRTY in Table 10 is 37.15%.

20 40 60 80 100
Size of Training Set

20

30

40

50

60

70

80

90

100

Pe
rf

or
m

an
ce

41.11
45.70 47.84 49.87

54.43

77.34 78.51 79.01 79.60 80.05

Variable Name (Top-1 Accuracy %)
Variable Origin (F1-Score)

Figure 4: The impact of corpora sizes on VARBERT’s
performance.

TABLE 5: Performance of VARBERT on about 150K func-
tions collected from only AArch64 binaries.

Split Variable Name Variable Origin

Top-1 Top-3 Top-5 Accuracy F1

IDA Function 46.89 57.16 60.81 77.72 77.01

Binary 27.60 36.19 39.86 76.00 75.26

Ghidra Function 50.40 59.38 62.51 86.32 82.69

Binary 31.92 38.74 41.65 84.87 81.01

performance on the variable name prediction task (41.11%)
and the variable origin prediction task (77.34%). The ac-
curacy increases with more training data, which shows the
importance of building even larger data sets.

Generalizability to non-x86-64 binaries. The final exper-
iment in the ablation study is understanding the impact
of binary architecture choices. We built a new data set
using only AArch64 (ARM64) binaries (with optimization
level O2) from the Gentoo package repository and trained
a VARBERT model for it to study the generalizability
of VARBERT on non-x86-64 binaries. This new data set
(with 150K functions for IDA and 140K functions for
Ghidra) is much smaller than VarCorpus because many
Gentoo packages failed to build for AArch64. As such,
we built another data set by injecting another 150K unique
decompiled functions from x86-64 binaries, making a total
of around 300K functions for both IDA and Ghidra. The
results, in Tables 5 and 6, show comparable performance to
VARBERT models that are trained on similar numbers of
x86-64 decompiled functions. This shows that the approach
that VARBERT represents generalizes to other architectures,
and the performance strongly correlates to the number of
functions in the training set (regardless of architecture).

TABLE 6: Performance of VARBERT on about 300K func-
tions collected from both AArch64 and x86-64 binaries.

Split Variable Name Variable Origin

Top-1 Top-3 Top-5 Accuracy F1

IDA Function 52.20 62.03 65.34 79.47 78.83

Binary 34.89 43.76 47.08 77.73 76.66

Ghidra Function 56.36 63.60 66.04 87.08 84.25

Binary 39.60 46.01 48.40 86.81 82.62

6.5. RQ4: How does VARBERT help reverse engi-
neers in real-world binary analysis tasks?

We performed a user study on the task of understanding
decompiled functions. Our study was exempted by our In-
stitutional Review Board (IRB) at Arizona State University
(ASU). However, we followed the same ethics and privacy
requirements that an IRB would normally enforce.

Participants. We invited 34 students who have gone through
reverse engineering trainings offered in undergraduate- or
graduate-level security courses at ASU to participate in our
user study. Out of 34 students, four (4) are expert reverse
engineers (who either are frequent Capture-The-Flag players
or have over three years of binary reverse engineering expe-
rience). 7 students (none of which are experts) registered for
the study but did not finish all questions, leaving 27 students
who completed the entire study. Appendix A.5.1 provides
the invitation email.

Function Understanding Task. We randomly picked 13 de-
compiled function pairs (with and without predicted variable
names) with at least four local variables or function param-
eters, at least 10 lines of code, at most 100 lines of code,
and at least 75% of correctly predicted variable names from
the test set of VarCorpus. For each function pair, we provide
four choices that describe the intended functionality of each
function in English. Each choice contains one or two sen-
tences. During the study, each participant is randomly given
one function out of each pair (so no one gets both named
and nameless variants of the same function). Appendix A.5.2
provides an example function pair as well as the choices.

During the study, we recorded the score of each partici-
pant (one point for every correctly answered question, zero
points for incorrect answers) and how long each participant
spent to answer each question. At the end of the study, we
asked six more questions to collect meta information about
the study (e.g., whether the participant used search engines
during the study or not) as well as the user perception.
Results. Correctness. Table 7 shows average scores for
all participants and participants within each skill-class of
our user study. On average, participants answered questions
more correctly when they faced decompiled functions with
predicted variable names (66.67% versus 55.49%, an im-
provement of 11.18%). In terms of correctness, predicted
variable names helped expert, intermediate, and novice re-
verse engineers at roughly similar levels: The correctness

TABLE 7: The average score and time spent on understand-
ing decompiled functions with predicted variable names
(Predicted) and without predicted variable names (Raw).

Category Users Avg. Score (%) Avg. Time (sec.)

Overall Raw Predicted Overall Raw Predicted

All 27 61.34 55.49 66.67 116.87 123.84 110.19

Expert 4 90.70 84.00 100.00 95.11 94.18 96.47
Intermediate 4 71.15 65.22 75.86 118.28 141.35 98.22

Novice 19 54.22 47.41 60.15 120.49 126.92 114.65

rate improvement was between 10% and 13%. We conclude
that having mostly correctly predicted variable names helps
users of all skill levels on the function understanding task.
Analysis speed. Table 7 also shows the average time that
each skill-class participants spent before answering ques-
tions (regardless of the correctness of their answers). Over-
all, participants understand decompiled functions with pre-
dicted variable names faster than functions without predicted
variable names (110.19 versus 123.84). Interestingly, while
predicted variable names showed little help to experts, they
helped intermediate-level participants most, reducing the
average time by almost 43 seconds (98.22 versus 141.35).
User perception. All but one participant agreed that having
predicted and meaningful variable names made understand-
ing the functionality of a decompiled function easier. Ad-
ditionally, only nine (9) participants copied the code into a
local text editor and attempted to rename variables to assist
with their understanding (our online interface for the user
study did not allow code editing). This shows the usefulness
of VARBERT as well as the necessity of predicting variable
names for function understanding tasks in general.

7. Case Studies

7.1. DIRTY and VARBERT Comparison on DIRT

We select one example of variable name prediction
results to examine here as a case study. We chose the func-
tion qemu_clock_enable from DIRT and compared the
variable name prediction results of DIRTY and VARBERT.

Listing 2a shows the original source code of the
qemu_clock_enable function (which we were able to
find using the decompilation output). Next to Listing 2a
shows the decompilation output with the variable name
prediction results of DIRTY in Listing 2b and VARBERT
in Listing 2c. In the decompilation output, we removed type
casts (a keyboard shortcut in IDA) for easier comparison be-
tween the outputs. In both decompilation outputs, variables
that are predicted correctly are styled italic green while
variables that are predicted incorrectly are styled red.

The function in Listing 2a has three developer-intended
variables: clock, enabled, and old. DIRTY in List-
ing 2b correctly predicted enabled, but failed for the
others, predicting clock as uc and old as status. How-
ever, VARBERT in Listing 2c correctly predicted clock
and old but was incorrect in predicting enable for

void qemu_clock_enable(
QEMUClock *clock, bool enabled) {

bool old = clock->enabled;
clock->enabled = enabled;
if (enabled && !old) {
qemu_clock_notify(clock);

}

}

(a) Original source code.

unsigned __int64 qemu_clock_enable(
__int64 uc, char enabled) {

char status;
unsigned __int64 v4;
v4 = __readfsqword(Number);

status = *(uc + Number);

*(uc + Number) = enabled;
if (enabled && status != Number) {
qemu_rearm_alarm_timer(alarm_timer)
;

}

return __readfsqword(Number) ˆ v4;
}

(b) DIRTY predicted variable names.

unsigned __int64 qemu_clock_enable(
__int64 clock, char enable) {

char old;
unsigned __int64 v4;
v4 = __readfsqword(Number);

old = * (clock + Number);

*(clock + Number) = enable;
if (enable && old != Number) {
qemu_rearm_alarm_timer(alarm_timer)
;

}

return __readfsqword(Number) ˆ v4;
}

(c) VARBERT predicted variable names.

Listing 2: Example case study on the function qemu_clock_enable from the DIRT data set. 2a shows the actual source
code for reference. 2b shows DIRTY’s predictions and 2c shows VARBERT’s predictions on the decompiled code. Note
that variables that are predicted correctly are styled italic green while variables that are predicted incorrectly are styled red.
Also note that variable v4 in the decompilation output is an extraneous variable, and is therefore not predicted by either
system.

enabled. Note that even though enable is very semanti-
cally similar to enabled, the strict design of our evaluation
counts this as a failure when considering top-1 accuracy.

7.2. Mispredictions

VARBERT and DIRTY both consider a prediction cor-
rect if it is a strict match. But some of these mispredictions
are as valuable as predictions. We looked into VARBERT’s
prediction results when running on VarCorpus-O0 (IDA) to
understand its mispredictions. Table 8 shows examples of
developer intended variables, the percentage of time that
the correct variable was predicted along with the top-3
incorrect predictions. For instance, original variable name
buffer was predicted correct 59.19% of the time, and
the other incorrect predictions were buf, UNK, and data.
For a human, the semantic meanings of these predictions
are quite similar, however we count these predictions as
mispredictions. We see a similar misprediction trend with
the variable position, where pos and position are
essentially the same word.

We also noticed that the model seemed to pick up on
nuances of the English language. For example, the VAR-
BERT prediction from Section 7.1 in Listing 2c: VARBERT
predicted enabled as enable. These two words share the
same root, but this is not a correct prediction.

8. Discussion

While VARBERT improves the feasibility of variable
name prediction on real-world decompiled code by a sizable
margin, we envision that this research challenge will still
remain unsolved for some time. We discuss in this section
limitations of VARBERT as well as potential future research
directions that may lead to the ultimate solution of readable
and useful decompilation.

TABLE 8: Common and uncommon variables, their proba-
bilities of getting correctly predicted, and the probabilities of
the Top-3 incorrect predictions of VARBERT on VarCorpus-
O0 (IDA).

Correct Predictions Top-3 Incorrect Predictions

buffer buffer (59.19%) buf (9.19%) UNK (5.41%) data (3.27%)

len len (67.52%) UNK (6.86%) size (3.58%) n (2.56%)

tmp1 tmp1 (49.50%) tmp0 (14.19%) tmp2 (10.91%) tmp3 (4.76%)

position position (33.19%) UNK (13.30%) pos (4.68%) index (3.95%)

srcsize srcsize (40.00%) len (40.00%) UNK (20.00%) -

8.1. Threats to Validity

Insufficient decompilation quality. In the course of con-
ducting this research we notice that modern binary code
decompilers usually fail to generate satisfactory results for
C++ binaries, or C binaries that were compiled with opti-
mizations enabled. This is because binary decompilation is
its own research area with many unsolved research prob-
lems. Variable name prediction can only build upon correct
identification of variables in decompilation output. When
decompilers fail to yield sufficiently good results, especially
when many human-created variables are not identified, VAR-
BERT (and other solutions) cannot predict variable names
for variables that do not exist in decompiled code.
Unrepresentative corpora. A key assumption underpinning
statistical machine learning is that the training set must be of
an independent and identical distribution as real-world sam-
ples. We built our corpora by collecting C and C++ packages
in package repositories of two major Linux distributions.
The corpora may not be representative for executables on
other platforms, such as Windows or MacOS.
Decompiler limitations. Our type-stripping technique de-
pends on the decompilers’ ability to preserve variables
during decompilation. Unfortunately, many decompilers do
not even parse DWARF debug symbols, which is why we

use IDA and Ghidra in our evaluation. Using VARBERT on
other decompilation output would require resorting to other
lower-accuracy variable-matching techniques when working
on the output of those decompilers, which may significantly
degrade the performance of VARBERT.
Near Duplicates. We use hash-based deduplication for
removing duplicates from the data set and remove exact
duplicate functions after some preprocessing. Based on our
analysis, similarity-based deduplication technique, which
aims to eliminate near duplicates, is insensitive to subtleties
of the code. This technique might mistakenly identify two
functions as near-duplicates solely based on subtle textual
variations, despite the two functions exhibiting different
functionalities. Therefore, elimination of near-duplicates in
code is an interesting research problem that requires more
in-depth study.

9. Related Work

Binary decompilation. Decompilation was originally re-
ferred to as “reverse compilation” by Cifuentes in a seminal
thesis [11]. Critical problems that binary code decompila-
tion must solve are (control-flow) structural analysis and
variable type inference. Phoenix first proposed semantics-
preserving structural analysis [50]. Dream implemented a
goto-free structural recovery algorithm [62]. Gussoni et al.
proposed an approach that structures binary-level control
flow graphs with zero goto statements [24]. In the most
recent work, SAILR [8] identifies the root causes of gotos
and inverts goto-inducing compiler optimizations, resulting
in decompiled code which is closer to the source code.
Regarding variable type inference, TIE [37], retypd [45], and
Osprey [66] are recent work for inferencing variable types
on binary programs. Advances in binary decompilation ben-
efit VARBERT by providing higher-quality decompilation
output that resembles human-developed source code.
Neural models in binary decompilation. Recently, re-
searchers have been applying deep learning in decompiling
binary code or improving the decompilation result. Katz
et al. used recurrent neural networks to decompile binary
code snippets into C code [33]. Coda is a recent end-to-
end neural-based approach to decompilation [21]. While
they have achieved promising results, it is still too early
to decompile reasonably sized binary programs purely with
neural models.

More research projects aim to use neural networks to
improve the quality of binary reverse engineering results
or decompilation output. Debin is the first attempt in using
machine learning to predict debug information for stripped
binary code [25]. DIRE focuses on predicting variable
names in decompilation output [36]. NFRE predicts function
names on stripped binaries by learning from a large corpus
of stripped binaries [22]. DIRECT improved upon DIRE by
not requiring an AST for the decompilation output and only
relying on text tokens, and it was evaluated on DIRE’s data
set [44]. DIRTY advances the field by predicting both vari-
able names and types on decompiled code [10]. VARBERT
directly improves on DIRE by first introducing a transfer-

learning-based model, which addresses the fundamental
challenge in data set building. VARBERT also proposes
a new data set VarCorpus that alleviates many key issues
in DIRE and DIRTY’s original training and test corpus.
Finally, VARBERT expands variable name prediction to
multiple decompilers (IDA and Ghidra) and optimization
levels, while DIRE and DIRTY only support IDA and -O0
compiler optimization.

10. Conclusion

We propose a new solution VARBERT for predicting
meaningful variable names in decompilation output. VAR-
BERT is based on transfer learning, which acquires knowl-
edge from a large corpus of human-developed source code
and fine-tunes for the task of variable name and origin
prediction in decompilation output from two decompilers
(IDA and Ghidra). During our research, we built a new
data set that is more extensive than existing data sets. We
demonstrate that VARBERT outperforms both DIRE and
DIRTY on this new data set. Our research corrects the
existing understanding of the research progress on the topic
of variable name prediction in decompiled code, establishes
new baselines, and, by releasing our research artifacts to the
public, will foster new research on this topic.

Acknowledgement

This project has received funding from the
following sources: Defense Advanced Research Projects
Agency (DARPA) Contracts No. HR001118C0060,
FA875019C0003, N6600120C4020, and N6600122C4026;
Advanced Research Projects Agency for Health (ARPA-H)
Contract No. SP4701-23-C-0074; the Department of the
Interior Grant No. D22AP00145-00; the Department of
Defense Grant No. H98230-23-C-0270; and National
Science Foundation (NSF) Awards No. 2146568 and
2232915.

References
[1] DIRE evaluation dataset. https://zenodo.org/record/3403077.
[2] DIRTY evaluation dataset. cmu-itl.s3.amazonaws.com/dirty/dirt.tar.gz.
[3] huzecong/ghcc: GitHub cloner & compiler. https://github.com/huzecong/ghcc.
[4] The log of a CI run for dirty on GitHub Actions. https://github.com/

CMUSTRUDEL/DIRTY/runs/6116940575.
[5] Whole word masking scheme in bert. https://github.com/google-research/bert.
[6] Miltiadis Allamanis. The adverse effects of code duplication in machine learning

models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, pages 143–153, 2019.

[7] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King, Markus
Kusano, Caroline Lemieux, László Szekeres, and Wei Wang. Fudge: fuzz driver
generation at scale. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 975–985, 2019.

[8] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain, Derron
Miao, Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, and Ruoyu Wang. Ahoy
sailr! there is no need to dream of c: A compiler-aware structuring algorithm
for binary decompilation. In Proceedings of the USENIX Security Symposium,
August 2024.

[9] Martial Bourquin, Andy King, and Edward Robbins. Binslayer: accurate
comparison of binary executables. In Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop, pages 1–10, 2013.

[10] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, Graham
Neubig, and Bogdan Vasilescu. Augmenting Decompiler Output with Learned

https://zenodo.org/record/3403077
cmu-itl.s3.amazonaws.com/dirty/dirt.tar.gz
https://github.com/huzecong/ghcc
https://github.com/CMUSTRUDEL/DIRTY/runs/6116940575
https://github.com/CMUSTRUDEL/DIRTY/runs/6116940575
https://github.com/google-research/bert

Variable Names and Types. In Proceedings of the USENIX Security Symposium,
August 2022.

[11] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland
University of Technology, 1994.

[12] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault, and Antoine
Bordes. Supervised learning of universal sentence representations from natural
language inference data. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pages 670–680, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics.

[13] The Ghidra decompiler. The Ghidra decompiler, 2022. https://ghidra-sre.org/.
[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[16] Chris Donahue, Mina Lee, and Percy Liang. Enabling language models to fill
in the blanks. arXiv preprint arXiv:2005.05339, 2020.

[17] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. Deepbindiff: Learning
program-wide code representations for binary diffing. In Network and Dis-
tributed System Security Symposium, 2020.

[18] Lukás Ďurfina, Jakub Křoustek, and Petr Zemek. Psybot malware: A step-by-
step decompilation case study. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 449–456. IEEE, 2013.

[19] Lukáš Ďurfina, Jakub Křoustek, Petr Zemek, Dušan Kolář, Tomáš Hruška, Karel
Masařı́k, and Alexander Meduna. Design of a retargetable decompiler for a
static platform-independent malware analysis. In International Conference on
Information Security and Assurance, pages 72–86. Springer, 2011.

[20] Mobius Strip Reverse Engineering. An exhaustively-analyzed IDB for Com-
RAT v4, 2021. https://www.msreverseengineering.com/blog/2020/8/31/an-
exhaustively-analyzed-idb-for-comrat-v4.

[21] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Fari-
naz Koushanfar, and Jishen Zhao. A neural-based program decompiler.
arXiv:1906.12029 [cs], Jun 2019. arXiv: 1906.12029.

[22] Han Gao, Shaoyin Cheng, Yinxing Xue, and Weiming Zhang. A lightweight
framework for function name reassignment based on large-scale stripped bina-
ries. In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 607–619, 2021.

[23] Yuxian Gu, Zhengyan Zhang, Xiaozhi Wang, Zhiyuan Liu, and Maosong Sun.
Train no evil: Selective masking for task-guided pre-training. arXiv preprint
arXiv:2004.09733, 2020.

[24] Andrea Gussoni, Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta.
A comb for decompiled c code. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, page 637–651. ACM,
Oct 2020.

[25] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
Debin: Predicting debug information in stripped binaries. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 1667–1680, 2018.

[26] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415, 2016.

[27] SA Hex-Rays. Hex-rays decompiler, 2013.
[28] Hopper. Hopper, 2022. https://www.hopperapp.com/.
[29] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. Codefill: Multi-token

code completion by jointly learning from structure and naming sequences. In
Proceedings of the 44th International Conference on Software Engineering,
pages 401–412, 2022.

[30] Alan Jaffe, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, and Bog-
dan Vasilescu. Meaningful variable names for decompiled code: A machine
translation approach. In Proceedings of the 26th Conference on Program
Comprehension, pages 20–30, 2018.

[31] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo
Kim. Winnie: Fuzzing windows applications with harness synthesis and fast
cloning. In Proceedings of the 2021 Annual Network and Distributed System
Security Symposium (NDSS), Virtual, 2021.

[32] Sushma Kalle, Nehal Ameen, Hyunguk Yoo, and Irfan Ahmed. Clik on plcs!
attacking control logic with decompilation and virtual plc. In Binary Analysis
Research (BAR) Workshop, Network and Distributed System Security Symposium
(NDSS), 2019.

[33] Deborah S. Katz, Jason Ruchti, and Eric Schulte. Using recurrent neural
networks for decompilation. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), page 346–356. IEEE,
Mar 2018.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[35] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,
Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova, Llion Jones, Ming-Wei
Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural
questions: a benchmark for question answering research. Transactions of the

Association of Computational Linguistics, 2019.
[36] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire

Le Goues, Graham Neubig, and Bogdan Vasilescu. DIRE: A neural approach to
decompiled identifier naming. In 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 628–639. IEEE, 2019.

[37] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled reverse
engineering of types in binary programs. In Proceedings of the 18th Annual
Network and Distributed System Security Symposium (NDSS’11), page 18, Feb
2011.

[38] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas
Eck, Chris Callison-Burch, and Nicholas Carlini. Deduplicating training data
makes language models better. arXiv preprint arXiv:2107.06499, 2021.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

[40] Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide
Balzarotti. The convergence of source code and binary vulnerability discovery –
a case study. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS22), ASIACCS 22, June 2022.

[41] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. arXiv preprint arXiv:1708.00107,
2017.

[42] Omid Mirzaei, Roman Vasilenko, Engin Kirda, Long Lu, and Amin Kharraz.
Scrutinizer: Detecting code reuse in malware via decompilation and machine
learning. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 130–150. Springer, 2021.

[43] Binary Ninja. Binary Ninja, 2022. https://binary.ninja/.
[44] Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. DIRECT: A

Transformer-based Model for Decompiled Variable Name Recovery. Workshop
on Natural Language Processing for Programming (NLP4Prog), 2021.

[45] Matthew Noonan, Alexey Loginov, and David Cok. Polymorphic type inference
for machine code. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, page 27–41, Mar 2016.

[46] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan
Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations,
2019.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[48] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ questions for machine comprehension of text. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages
2383–2392, Austin, Texas, November 2016. Association for Computational
Linguistics.

[49] Andrea Schankin, Annika Berger, Daniel V Holt, Johannes C Hofmeister, Till
Riedel, and Michael Beigl. Descriptive compound identifier names improve
source code comprehension. In 2018 IEEE/ACM 26th International Conference
on Program Comprehension (ICPC), pages 31–3109. IEEE, 2018.

[50] Edward J Schwartz, JongHyup Lee, Maverick Woo, and David Brumley. Native
x86 decompilation using semantics-preserving structural analysis and iterative
control-flow structuring. In 22nd USENIX Security Symposium (USENIX Secu-
rity 13), page 17. USENIX Association, 2013.

[51] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

[52] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. Firmalice - automatic detection of authentication bypass
vulnerabilities in binary firmware. In Proceedings 2015 Network and Distributed
System Security Symposium. Internet Society, 2015.

[53] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christo-
pher Kruegel, et al. Sok:(state of) the art of war: Offensive techniques in binary
analysis. In 2016 IEEE Symposium on Security and Privacy (SP), pages 138–
157. IEEE, 2016.

[54] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls,
Ruoyu Wang, Christopher Kruegel, and Giovanni Vigna. Rise of the hacrs:
Augmenting autonomous cyber reasoning systems with human assistance. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, page 347–362. ACM, Oct 2017.

[55] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: a dynamic
excavator for reverse engineering data structures. In Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS’11), Feb
2011.

https://ghidra-sre.org/
https://www.msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4
https://www.msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4
https://www.hopperapp.com/
https://binary.ninja/

[56] Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder repre-
sentations from transformers. arXiv preprint arXiv:1908.07490, 2019.

[57] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster, and
Michelle L Mazurek. An observational investigation of reverse engineers’
processes. In 29th USENIX Security Symposium (USENIX Security 20), page
1875–1892, 2020.

[58] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr:
Making reassembly great again. In Proceedings 2017 Network and Distributed
System Security Symposium. Internet Society, 2017.

[59] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 38–45, Online,
October 2020. Association for Computational Linguistics.

[60] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. A
generic approach to automatic deobfuscation of executable code. In 2015 IEEE
Symposium on Security and Privacy, pages 674–691. IEEE, 2015.

[61] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
Helping johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 158–177. IEEE, 2016.

[62] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew
Smith. No more gotos: Decompilation using pattern-independent control-flow
structuring and semantic-preserving transformations. In NDSS. Citeseer, 2015.

[63] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language
understanding. In Advances in neural information processing systems, pages
5754–5764, 2019.

[64] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Rus-
lan Salakhutdinov, and Christopher D Manning. Hotpotqa: A dataset for diverse,
explainable multi-hop question answering. arXiv preprint arXiv:1809.09600,
2018.

[65] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? arXiv preprint arXiv:1411.1792, 2014.

[66] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi
Kwon, Yousra Aafer, and Xiangyu Zhang. Osprey: Recovery of variable and data
structure via probabilistic analysis for stripped binary. In 2021 IEEE Symposium
on Security and Privacy (SP), page 813–832. IEEE, May 2021.

Appendix A.

A.1. Issues with Prior Data Sets
While investigating the prior data sets DIRE-DataSet and

DIRT, we noticed several issues that we detail here.
Significant overlap between test and training sets. In
DIRE-DataSet and DIRT, the test and training sets exhibit
a significant overlap. Approximately 79.9% of functions in
DIRE-DataSet’s test set exist in the training set. Therefore,
the overall accuracy (74.3%) that DIRE reported does not
reflect the true performance of their model as a variable
name prediction solution. Instead, it only demonstrates how
well DIRE identifies functions that were known to their
model during training.

DIRE authors were aware of this issue and reported an
accuracy of 35.3% for a body-not-in-train test set, where
they eliminated from the test set all functions that exist in the
training set. Similar is the case for DIRTY: The overlap in
their test and train set is 65.5% [10, Table 11] with variable
name prediction accuracy of 35.1% for body-not-in-train
functions [4]. These numbers reflect the real performance
for DIRE and DIRTY to generalize to new decompiled
functions.
High number of duplicated functions. Another issue we
discovered in DIRE-DataSet and DIRT is the high number
of duplicated functions. 683K (67.6%) functions among

TABLE 9: Numbers of total and duplicated functions in
DIRE-DataSet and DIRT. Overall = Train + Test. We do
not include the development set of DIRE-DataSet and DIRT
(because it did not impact DIRE’s and DIRTY’s training or
testing), which has about 100K functions. Overlap is the
duplicate functions between Test set and Train set of DIRE-
DataSet and DIRT.

Functions DIRE DIRTY

Overall
Total 1,214,930 1,872,420
Duplicates 817,298 (67.2%) 1,015,768 (54.2%)
Deduplicated 397,632 856,652

Train
Total 1,011,054 1,668,544
Duplicates 683,814 (67.6%) 950,990 (56.9%)
Deduplicated 327,240 717,554

Test
Total 124,179 203,876
Duplicates 53,787 (43.3%) 64,778 (31.7%)
Deduplicated 70,392 139,098

Overlap Total 99,317 133531
De-duplicated 46,316 71,967

DIRE’s 1M functions that are used for training DIRE are
duplicates. Similarly, 1M (56.9%) out of 1.8M are duplicates
in training set of DIRTY.

The nature of neural network models will cause models
trained on these data sets to learn more from frequently ap-
pearing functions and ignore those less frequently appearing
functions.
High failure rate of variable matching. Another issue
with DIRE-DataSet and DIRT is the high failure rates
of variable matching. We understand that decompilers are
unable to recover all of the variable names from source
code, however oftentimes the variable matching algorithm
of DIRE and DIRT’s corpus creation is unable to match the
original human-created variable to the decompiler-assigned
variable. We performed analysis on a sample of functions
from each corpus in Section 5.4. Incorrect matching or
missing matches between human-created variable names and
decompiler-generated names impacts the ground-truth of the
data set.

In conclusion, we believe DIRE-DataSet and DIRT are
unsuitable for future research on predicting variable names
in decompiled code (but the data sets may still be useful for
other purposes).

A.2. Analysis of Quality Issues in DIRE-DataSet
and DIRT

For the interested readers, we include some detailed
analysis of the quality issues with DIRE-DataSet and DIRT.

Binaries. An essential difference between VarCorpus and
DIRT (also DIRE-DataSet) is the definition of “binaries.”
DIRT and DIRE-DataSet use compiled object files whereas
VarCorpus use full binary executables or libraries. The
reason being, both DIRT and DIRE-DataSet use ghcc [3]
to build packages, and ghcc predominantly outputs and
generates object files by compiling every .c file instead

of properly building each C project. Thanks to the DIRE
authors, we verified our hypothesis with their raw data set
of binaries, and we found over 90% of binaries in their data
set are object files.

Duplicated functions. Table 9 shows an overview of DIRT
and DIRE-DataSet in terms of numbers of functions in each
data set split. There are similar percentages of duplicated
functions within each split (with the only exception being
the test set of DIRT, which may be an outlier).

We believe that the cause of this high duplication in
DIRT and DIRE-DataSet is twofold: (1) multiple copies
of the same projects with same or different versions or
similar projects and (2) duplicate functions across object
files. We verified this by examining the GitHub project list
used in DIRT. For example, 379 GitHub users had a “linux”
repository, which are likely due to the same project pushed
multiple times onto GitHub. DIRE attempted to remove
duplicate binaries by hashing [36, Section V]. However,
because the object file binaries are compiled with debug
information, which includes the source code path in the
compiled object file binary, identical source code projects
will likely produce object file binaries with different hashes.

A.3. Hyper Parameters

We optimized our models using BERTAdam [15, 34]
with the following parameters: β1 = 0.9, β2 = 0.999, ϵ =
1e−6, and L2 weight decay of 0.01. We warmed up over the
first 10,000 steps to a peak value of 1e−4 and then linearly
decayed. We set the dropout to 0.1 on all layers and attention
weights. Our activation function was GELU [26]. We trained
all our models for 30 epochs, except for experiments about
evaluating DIRE on DIRE-DataSet where we trained for 60
epochs (so that our results are comparable to the ones in the
DIRE paper, where models were trained for 60 epochs). We
performed training and experiments on four and eight 80GB
Nvidia A100s, six and eight 49GB Nvidia RTX A6000s and
two 24GB NVIDIA GeForce RTX 3090 GPUs.

A.4. Comparison of prior work and VarBERT on
DIRE-DataSet and DIRT

Fixing DIRE-DataSet and DIRT. To better understand
the impact of duplicated functions on neural models, we
attempted to address the duplication problem in the DIRE-
DataSet and DIRT corpora by fully deduplicating functions
to create fixed data sets that we call DIRE-DataSet-dedup
and DIRT-dedup. We deduplicated individually each of the
training, validation, and test set of DIRE-DataSet and DIRT.
As a result, the number of functions in the training data
was reduced from 1M to 327K approximately in DIRE-
DataSet-dedup and from 1.6M to 717K approximately in
DIRT-dedup. In Section A.4, we will evaluate VARBERT
on these two new corpus.

For completeness, we compare the performance of VAR-
BERT, DIRE [36], DIRECT [44], and DIRTY [10] on
the original DIRE-DataSet, the fixed DIRE-DataSet-dedup,
original DIRT, and the fixed DIRT-dedup data sets. Addi-

TABLE 10: Results of DIRE, DIRTY, DIRECT, and VAR-
BERT on DIRE-DataSet, the fixed DIRE-DataSet-dedup,
DIRT, and the fixed DIRT-dedup. To understand the impact
of pre-training, we also ran VARBERT without pre-training
on HSC, indicated as VARBERT (no PT). To save compu-
tation resources, we did not re-run experimental results for
directly comparable results, and results of models marked
with an asterisk∗ are taken from the indicated paper.

Data set Model Top-1 Accuracy (%)

DIRE-DataSet

DIRE [36, Table 1]∗ 35.3

DIRTY [10, Table 4]∗ 42.8

DIRECT [44, Table 1]∗ 42.8

VARBERT (no PT) 51.24

VARBERT 61.49

DIRE-DataSet-dedup DIRE 38.29

VARBERT 61.73

DIRT

DIRE [10, Table 4]∗ 31.8

DIRTY [10, Table 4]∗ 36.9

VARBERT (no PT) 47.11

VARBERT 51.28

DIRT-dedup DIRTY 54.066

VARBERT 51.02

tionally, we also evaluate VARBERT without pre-training
on HSC, indicated as VARBERT (no PT). The goal of this
experiment is to demonstrate how much of VARBERT’s
performance gain is due to the adoption of a new model.

Result. Table 10 shows the result of this experiment. Note
that to save computational resources in cases where results
from papers were directly comparable (on the same dataset)
we included the results from prior papers.

The results show that, on the original DIRE-DataSet,
VARBERT without pre-training outperformed prior work:
35.3% top-1 accuracy for DIRE, 42.8% for DIRTY, 42.8%
for DIRECT, and 51.24% for VARBERT without pre-
training. However, VARBERT with pre-training increased
the top-1 accuracy to 61.49%. This same result also held for
the original DIRT dataset: 31.8% top-1 accuracy for DIRE,
36.9% for DIRTY, and 47.11% for VARBERT without pre-
training. And VARBERT with pre-training increased the
top-1 accuracy to 51.28%.

To measure the impact of duplication in the DIRE-
DataSet and DIRT datasets, we re-ran DIRE and VARBERT
on DIRE-DataSet-dedup and DIRTY and VARBERT on
DIRT-dedup. The results in Table 10 show that DIRE’s
accuracy improves on the fixed DIRE-DataSet-dedup from
35.3% to 38.29%, while VARBERT maintains a high ac-
curacy of 61.49%. Likewise, DIRTY’s accuracy improves
from 36.9% to 54.06% on the fixed DIRT-dedup, while
VARBERT’s accuracy is 51.02%.

A.5. User Study Details

A.5.1. A Sample Recruitment Email
Dear CSE365/CSE545 hackers,
We are conducting a study on AI-assisted binary de-

compilation to better understand the effect of meaningful
variable names in decompiled functions. The main form of
this study is a survey of computer science students who will
be asked to read up to 15 decompiled functions and answer
multiple choice questions. We invite you to participate in
our study.

This study will be conducted remotely on a website.
Upon successful completion, you will receive a $50 Amazon
gift card as compensation.

We will invite 15 hackers (first reply, first serve!)7 to
lend us up to 60 minutes of their precious time. If you
are interested, please reply to this email using either your
ASU or your personal email address, wherever you want
to receive the compensation. We will then send you a link
within the next three days for starting the study.

Please feel free to email us at [REDACTED] or
[REDACTED] should you have any questions.

Thank you!
Best, [REDACTED]

A.5.2. An Example Question
Question: Which option best describes the functionality

of the the following function (as shown in Listing 3)?
A Calculating the entropy of some data. The address of

the data is provided by the first function parameter.
The size of the data is provided by the second function
parameter.

B Calculating the length of a string. The address of the
string is provided by the first function parameter. The
length of the string is provided by the second function
parameter.

C Calculating the chi-square value of some data. The
address of the data is provided by the first function
parameter. The size of the data is provided by the
second function parameter.

D Calculating the size of a dictionary (or a key-value
mapping). The address of the dictionary is provided
by the first function parameter. The length of the dic-
tionary is provided by the second function parameter.

7. We intentionally put a lower number here to quickly get students’
responses. We invited 34 students in the end.

double __fastcall sub_2DC64(double *var_7, int var_4, int
var_1, int var_5, double *var_9)↪→

{
int var_3;
double var_10;
double var_6;
double var_2;
double var_8;

if (var_1 <= 0)
return 0.0;

var_2 = 0.0;
for (var_3 = 0; var_3 < var_4; ++var_3)
{
if (var_5 >= 0)
{
var_6 = 1.0;

}
else if (*var_7 >= 0.0)
{
if (*var_7 == 0.0)

var_6 = 1.0;
else
var_6 = 1.0 / *var_7;

}
else
{
var_6 = -1.0 / *var_7;

}
var_8 = *var_7++ - *var_9++;
var_2 = var_6 * var_8 * var_8 + var_2;

}
var_10 = var_2 / var_1;

*&var_10 = var_10;
return var_10;

}

(a) The raw decompiled function.
double __fastcall sub_2DC64(double *data, int ndim, int

nfree, int mode, double *dfit)↪→
{
int i;
double result;
double weight;
double chisq;
double diff;

if (nfree <= 0)
return 0.0;

chisq = 0.0;
for (i = 0; i < ndim; ++i)
{
if (mode >= 0)
{
weight = 1.0;

}
else if (*data >= 0.0)
{
if (*data == 0.0)

weight = 1.0;
else
weight = 1.0 / *data;

}
else
{
weight = -1.0 / *data;

}
diff = *data++ - *dfit++;
chisq = weight * diff * diff + chisq;

}
result = chisq / nfree;

*&result = result;
return result;

}

(b) The decompiled function augmented with predicted variable
names.

Listing 3: An example function pair in the user study.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper provides a new large-scale dataset and pro-
poses to use the BERT model to predict variable names in
decompiled code. The proposed method, VarBERT, lever-
ages debug information to generate decompiled code with
correct variable names labeled, then randomly masks vari-
able names to train the BERT model. It also identifies de-
fects in the dataset used in previous works and outperforms
related works on the new database.

B.2. Scientific Contributions

• Provides a New Data Set For Public Use
• Provides a Valuable Step Forward in an Established

Field
• Independent Confirmation of Important Results with

Limited Prior Research
• Creates a New Tool to Enable Future Science

B.3. Reasons for Acceptance

1) This paper identifies overlap, duplication, and variable
matching issues existing in the dataset used by SOTA
works.

2) This work provides a new large-scale, cross-
optimization variable names prediction dataset in
which variables are more accurately matched.

3) The presented tool largely outperforms existing SOTA
methods.

4) The evaluation is comprehensive and accompanied with
a user study.

5) Efforts on open science and reproducibility.

	Introduction
	Background
	Binary Reverse Engineering
	NLP Fundamentals

	Overview
	The Neural Model in VarBERT
	Building A New Data Set

	The VarBERT Model
	Basic Parameters
	Pre-Training
	Fine-Tuning

	Corpora Generation
	Shortcomings with Prior Data Sets
	Building VarCorpus
	Reliably Matching Variable Names
	Evaluating VarCorpus Quality

	Evaluation
	Implementation
	RQ1: How does VarBERT perform on VarCorpus?
	RQ2: How do prior work and VarBERT compare on VarCorpus?
	RQ3: How do different aspects of VarBERT impact its effectiveness?
	RQ4: How does VarBERT help reverse engineers in real-world binary analysis tasks?

	Case Studies
	DIRTY and VarBERT Comparison on DIRT
	Mispredictions

	Discussion
	Threats to Validity

	Related Work
	Conclusion
	Appendix A
	Issues with Prior Data Sets
	Analysis of Quality Issues in DIRE-DataSet and DIRT
	Hyper Parameters
	Comparison of prior work and VarBERT on DIRE-DataSet and DIRT
	User Study Details
	A Sample Recruitment Email
	An Example Question

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

